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Abstract

Recently, Neural Ordinary Differential Equations has emerged as a powerful frame-
work for modeling physical simulations without explicitly defining the ODEs
governing the system, but instead learning them via machine learning. However,
the question: “Can Bayesian learning frameworks be integrated with Neural ODE’s
to robustly quantify the uncertainty in the weights of a Neural ODE?” remains
unanswered. In an effort to address this question, we primarily evaluate the fol-
lowing categories of inference methods: (a) The No-U-Turn MCMC sampler
(NUTS), (b) Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) and (c)
Stochastic Langevin Gradient Descent (SGLD). We demonstrate the successful
integration of Neural ODEs with the above Bayesian inference frameworks on
classical physical systems, as well as on standard machine learning datasets like
MNIST, using GPU acceleration. On the MNIST dataset, we achieve a posterior
sample accuracy of 98.5% on the test ensemble of 10,000 images. Subsequently,
for the first time, we demonstrate the successful integration of variational inference
with normalizing flows and Neural ODEs, leading to a powerful Bayesian Neural
ODE object. Finally, considering a predator-prey model and an epidemiological
system, we demonstrate the probabilistic identification of model specification in
partially-described dynamical systems using universal ordinary differential equa-
tions. Together, this gives a scientific machine learning tool for probabilistic
estimation of epistemic uncertainties.

1 Introduction

The underlying scientific laws describing the physical world around us are often prescribed in terms
of ordinary differential equations (ODEs). Recently, Neural Ordinary Differential Equations [5] has
emerged as a powerful framework for modeling physical simulations without explicitly defining the
ODEs governing the system, but learning them via machine learning. By noticing that in the limit of
infinite layers, a ResNet module [12] behaves as a continuous time ODE, Neural ODEs allow the
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coupling of neural networks as expressive function transformations, and powerful purpose built ODE
solvers. While [5] explored a number of applications of the Neural ODE framework, their success in
a Bayesian inference framework remains unexplored.

Simultaneously, there has been an emergence of efficient Bayesian inference methods suited for
high-dimensional parameter systems, such as the No-U-Turn MCMC sampler (NUTS) [14] which
is an extension of the Hamiltonian Monte Carlo Algorithm, and Stochastic Gradient Markov Chain
Monte Carlo (SGMCMC) methods like Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [6]
and Stochastic Gradient Langevin Descent (SGLD) [34].

A number of works in literature explored the use of Bayesian methods to infer parameters of systems
defined by ODEs [21, 32, 10, 15] and others used Bayesian methods to infer parameters of neural
network models, e.g. [18, 22, 16]. Bayesian neural networks in particular has been an active area of
research for a while. The readers are referred to the excellent recent tutorial by [18] for an overview of
recent advances in the field. However, this prompts the question: “Can Bayesian learning frameworks
be integrated with Neural ODE’s to robustly quantify the uncertainty in the weights of a Neural
ODE?”

In an effort to address this question, we demonstrate and compare the integration of Neural ODEs
with the following methods of Bayesian Inference: (a) The No-U-Turn MCMC sampler (NUTS),
(b) Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) and (c) Stochastic Langevin Gradient
Descent (SGLD). We present successful results on classical physical systems and on standard machine
learning datasets (using GPU acceleration); especially on the standard MNIST dataset, we achieve a
test ensemble accuracy of 98.5% on 10000 images. This is a performance competitive with current
state-of-the-art image classification methods, which meanwhile lack our method’s ability to quantify
the confidence in its predictions. Subsequently, we premiere the integration of Bayesian Neural
ODEs with variational inference, the predictive power of which improves with the introduction of
normalizing flow.

Finally, advancing from learning a physical system’s differential equations via Bayesian Neural ODEs,
we consider the problem of recovering missing terms from a dynamical system using universal differ-
ential equations (UDEs) [25]. Using the Preconditioned SGLD variation of SGLD, we demonstrate
the predictive success of Bayesian UDEs on (a) a predator-prey model and (b) the epidemiological
model of COVID-19 spread. Through this, we present a viable method for the probabilistic quan-
tification of epistemic uncertainties via a hybrid machine-learning and mechanistic-model-based
technique.

Our approach differs from that of [1] who mainly looked at integration of Bayesian methods with
Neural SDE’s, and not Neural ODEs describing physical systems or large scale deep learning datasets
like the MNIST dataset, which we consider here.

In this study, we used the Julia differentiable programming stack [24] to compose the Julia differential
equation solvers [26] with the Turing probabilistic programming language [8, 35]. The study was
performed without modifications to the underlying libraries due to the composability afforded by the
differentiable programming stack.

2 Results

We illustrate the robustness of the Bayesian Neural ODE framework through the following case
studies:

Case study 1: Spiral ODE

The Spiral ODE model is prescribed by the following system of equations:

du1
dt

= −αu31 + βu32 (1)

du2
dt

= −βu31 − αu32 (2)
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Case study 2: Lotka-Volterra ODE

The Lotka-Volterra predator-prey model is prescribed by the following system of equations:

du1
dt

= −αu1 − βu1u2 (3)

du2
dt

= −δu2 + γu1u2 (4)

2.1 Bayesian Neural ODE: NUTS Sampler

The No-U-Turn-Sampler (NUTS) is an extension of the Hamiltonian Monte Carlo (HMC) algorithm.
Through a recursive algorithm, NUTS automatically determines when the sampler should stop an
iteration, and thus prevents the need to specify user defined parameters, like the number of steps L.
In addition, through a dual averaging algorithm, NUTS adapts the step size ε throughout the sampling
process.
We define the parameters of the d dimensional Neural ODE by θ. The action of the Neural ODE on
an input value u0 generates an output Ỹ = NNODEθ(u0). The input data is denoted by Ŷ . The loss
function, L is defined as

L(θ) =

d∑
i=1

||Ŷi − Ỹi||2 (5)

The model variables θ and the momentum variables r are drawn from the joint distribution

p(θ, r) ∝ exp[L(θ)− 1

2
r.r] (6)

where L is the logarithm of the joint density of θ. In terms of a physical analogy, if θ denotes a
particle’s position, then L can also be viewed as the negative of the potential energy function and
1
2r.r denotes the kinetic energy of the particle.

In the Bayesian Neural ODE framework, we define L(θ) as

L(θ) = −
d∑
i=1

||Ŷi − Ỹi||2 − θ.θ (7)

The θ.θ term indicates the use of Gaussian priors. We adapt the step size of the leapfrog integrator
using Nesterov’s dual averaging algorithm [14] with δ as the target acceptance rate. Finally, we define
the number of warmup samples as nw and the number of posterior samples collected as np.

We apply the Bayesian Neural ODE framework outlined above to case studies 1 and 2 given
in Equations 1-4. For case study 1, we use α = 0.1, β = 2. In the NUTS algorithm, we use
δ = 0.45, nw = 1000, ns = 500. For case study 2, we use α = 1.5, β = 1, γ = 3, δ = 1; with
δ = 0.45, nw = 500, ns = 1000. 2 layers with 50 units in each layer and tanh activation function
was used as the neural ODE architecture for both examples.

From figure 1, we can see that the Bayesian Neural ODE: NUTS prediction and forecasting for both
case studies outlined in Equations 1-4 are consistent with the ground truth data.

Figure 2a showing the posterior density and trace plots for the first 5 parameters of the Spiral ODE
example, shows that the samples are well mixed. The quick decay seen in the auto-corelation
plot shown in figure 2b also indicates a fast mixing Markov chain. This is also confirmed by
the effective sample size extracted for the posterior chain of 500 samples, which shows values of
362, 470, 134, 509, 661 for the first 5 parameters. Similar well mixed plots are seen for all parameters,
but are not shown here for the sake of brevity.
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(a) (b)

(c) (d)

Figure 1: Comparison of the Bayesian Neural ODE: NUTS prediction and estimation compared with
data for (a,b) Case study 1 and (c,d) Case study 2.

(a) (b)

Figure 2: For the Spiral ODE example (Equations 1-2), using the NUTS framework, figure shows: (a)
Trace plots and Density plots of the posterior and (b) auto-corelation plot for the first 5 parameters.
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Table 1: Spiral ODE: Effect of NUTS acceptance ratio and Neural ODE architecture. Number of
warmup samples, nw = 500 and number of posterior samples, ns = 500 for all cases shown. The
minimum loss value obtain is similar in all cases shown.

δ Units Layers Time (s)

0.45 5 2 480
0.45 10 2 900
0.45 50 2 2100
0.45 100 2 3900
0.45 10 3 3300
0.45 10 4 10200
0.65 50 2 3400
0.85 50 2 7900
0.95 50 2 8600

Table 1 shows the effect of NUTS acceptance ratio and Neural ODE architecture on the Bayesian
Neural ODE performance for the Spiral ODE example. The minimum loss value obtain is similar in
all cases shown. Thus, we see that even the smallest neural architecture with 2 layers and 5 units in
each layer gives the optimal loss performance, and with a considerably better timing performance.
Among different NUTS acceptance ratios (δ) tested, the best timing performance is given by the
lowest acceptance ratio, δ = 0.45.

2.2 Bayesian Neural ODE: SGHMC

The Stochastic Gradient Hamiltonian Monte Carlo Sampler (SGHMC) is a method that combines
HMC’s effective state space exploration with stochastic gradient methods’ computational efficiencies
[6]. SGHMC injects friction to the "momentum" auxiliary variables that parameterize the target
distribution’s Hamiltonian dynamics.

The Hamiltonian function H(θ, r) = U(θ) + 1
2r
TM−1r measures the total "energy" of a system

with position variables θ and momentum variables r. The potential energy function is given by
U = −

∑
x∈D log p(x|θ)− log p(θ); mass matrix M and r define the kinetic energy term.

To sample from the posterior distribution p(θ|D), HMC considers generating samples from the joint
distribution π(θ, r) ∝ exp(H(θ, r)), proposing samples according to the Hamiltonian dynamics:

dθ = M−1rdt (8)
dr = −∇U(θ)dt (9)

Here, SGHMC adds a "friction" term to the momentum update. In practice, we consider ∇Ũ , a noisy
estimate of ∇U . Similarly, B̂ is defined as an estimate of B(θ) = 1

2εV (θ), the diffusion matrix
contributed by the covariance of the stochastic gradient noise V (θ). SGHMC additionally introduces
a user-specified friction term C � B̂. In total, by defining v = εM−1r, η = ε2M−1, α = εM−1C,
and β̂ = εM−1B̂ for stepsize ε, SGHMC iteratively updates the variables for sampling according to:

θt := θt + ∆θt (10)
vt := vt + ∆vt (11)

∆θt := v (12)

∆vt := −η∇Ũ(x)− αv +N (0, 2(α− β̂)η) (13)

Naturally, η corresponds to the learning rate and α the momentum decay.

We apply the Bayesian Neural ODE framework outlined above to case studies 1 and 2 given in
Equations 1-4. For case study 1, we use α = 1, β = 1. In the SGHMC algorithm, we use η = 1.5−6

and α = 0.07 and draw 2500 posterior samples. We define a prior distribution centered at the MAP
point with a standard deviation of 0.4. For case study 2, we use α = 1.5, β = 1.0, γ = 3.0, and δ = 1.0;
we draw 350 samples with SGHMC using hyperparameters η = 7.0−6 and α = 0.07. We define a
prior distribution centered at the MAP point with a standard deviation of 1.0. For both case studies,
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(a) (b)

(c) (d)

Figure 3: Comparison of Bayesian Neural ODE SGHMC’s prediction and forecasting against ground
truth data for (a,b) case study 1 and (c,d) case study 2.

the neural ODE architecture consists of 2 layers with tanh activation function; there are 50 units in
each layer for case study 1, and 10 units for case study 2.

Figure 3 illustrates the consistency of Bayesian Neural ODE SGHMC’s prediction and forecasting
with ground truth data, for both case studies (Equations 1-4).

2.2.1 SGHMC on the MNIST dataset

(a)

Figure 4: Neural network architecture used for the image classification task on MNIST. The Neural
ODE contains two convolutional layers. The network has 208010 parameters in total. This architecture
was combined with the SGHMC method to lead to a Bayesian Neural ODE object which can be used
for image classification.

We now apply Bayesian Neural ODE with SGHMC to a image classification task on the MNIST
dataset. A ResNet [11] layer behaves as a continuous time ODE at the limit of infinite layers. Given
this natural analogy, we here implement ODE layers in place of the residual layers used in classic
image recognition architectures.

Specifically, we design three convolutional layers interspersed with Batch Normalization layers: the
initial layer has a 3× 3 filter and the next two convolutional layers each have a 4× 4 filter (stride
2× 2, padding 1× 1, ReLU activations). A Neural ODE layer with two convolutional layers with
3× 3 filter (padding 0, ReLU activations) is appended to act as a residual layer. Finally, we add an
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Table 2: Performance on MNIST using the Bayesian Neural ODE: SGHMC approach is outlined
in the present study. Here, 310 posterior samples for each image in a test set of 10,000 images is
considered. The best fit test error represents the mean of the number of erroneous predictions in all
the posterior samples (310) for all images (10000).

Error Neural ODE? Best fit Reference
estimates? test error test error

RK-Net 7 X 0.47 % Chen (2018)
ODE-Net 7 X 0.42 % Chen (2018)

Bayesian Alex-Net X 7 1 % Shridhar (2019)
Bayesian LeNet-5 X 7 2 % Shridhar (2019)

Bayesian Neural ODE (ensemble) X X 0.78 % Our study

adapative average pooling layer and a fully connected layer consisting of 10 neurons (one per class).
The full architecture is visualized in figure 4.

Given the Neural ODE architecture, we initialize SGHMC with decay schedule of εt = η.t−γ and
parameters γ = 0.01, η = 0.5 and α = 0.1, execute for 2530 iterations, and sample the last 310
parameter updates. We find that tempering—scaling the standard deviation of the added noise in
SGHMC by a constant [20]—significantly reduces time for convergence. Our experiment uses 104 as
the tempering constant. SGHMC is more computationally expensive, requiring ten epochs through
the training dataset, than a simple MAP estimation; a trial MAP optimization with ADAM yields a
98.7% test accuracy after a single-epoch run.

The test set consists of all 10,000 images in the MNIST dataset. Each cell in the heatmap of figure
5 represents the percentage of correct predictions out of 310 posterior samples on a single image.
91.8% of these cells have more than 99% confidence.
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(a)

Figure 5: Bayesian Neural ODE with SGHMC is applied to the MNIST dataset. Each cell in this
figure represents the percentage of correct predictions out of 310 posterior samples on a single image.
Results for the entire test set of 10, 000 images is visualized here as a 100× 100 heatmap

Table 2 shows the performance of our Bayesian approach on the MNIST data. Out of the 310 posterior
samples for each image in the test set of 10,000 images considered, the best fit test error represents
the mean of the number of erroneous predictions in all samples for all images. In our study, we
have obtained a test ensemble accuracy of 99.22 %, which is performance competitive with current
state-of-the-art image classification methods.

From table 2, we note that previous architectures for MNIST analysis either have a Neural ODE
architecture without error estimates [5] or do not incorporate a Neural ODE for error estimation [30].
Incorporated Neural ODEs in our approach, we not only demonstrate a classification performance
competitive with current state-of-the-art image classification methods; but also quantify the confidence
of our prediction.
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(a) (b)

Figure 6: Comparison of the Bayesian Neural ODE: SGLD estimation and data for the Lotka Volterra
ODE case study shown as (a) time series plots and (b) contour plots.

2.3 Bayesian Neural ODE: SGLD

Stochastic Gradient Langevin Dynamics (SGLD) is an adaptation, designed to sample from the
posterior as the iterations increase, of the usual stochastic gradient descent algorithm. In each
iteration, we update our vector θ of parameters according to the rule

θt := θt −∆θt (14)

∆θt :=
εt
2

(
∇ log p(θt) +

1

n

n∑
i=1

∇ log p(Dn|θ)

)
+ ηt (15)

ηt ∼ N (0, εt) (16)

where Dn are the minibatches the training dataset D has been split into. p(Dn|θ) is the likelihood,
whose logarithm is equivalent to the loss function, and p(θt) is any priors, also known as regularisation
terms, imposed onto the parameters θ. The stepsizes εt must follow a decaying scheme which satisfies
the conditions [34]:

∞∑
t=1

εt =∞
∞∑
t=1

ε2t <∞ (17)

in this article we have chose a polynomial decaying scheme εt = a(b + t)−γ with a, b, and γ as
tuneable hyperparameters.

The update scheme for θ is composed of two stages. In the first stage, where the approximate gradient
dominates, we approach the regions with higher mass probability. During the second phase, instead
of allowing θ to converge to a single value, it walks randomly with a predominantly Gaussian noise
since the gradient is O(εt) and the Gaussian noise is O(

√
εt). It is on this second stage where it is

theoretically guaranteed to converge to the posterior, and hence, we may use this stage to sample
parameters from the posterior.

We now apply SGLD on the Lotka Volterra system in Equations 3-4. The Lotka Volterra system
used in this case has the same parameters as the one used for NUTS. Again, we apply SGLD with
45000 iterations and sampled the last 2000 updates. The hyperparameters used were a = 0.0025, b =
0.05, γ = 0.35. The neural ODE architecture was again 2 layers with 50 neurons and tanh activation.
The algorithm took approximately 679 seconds to run.

From figure 6 we notice a good fit on the training dataset. The Bayesian Neural ODE trained using
the SGLD approach has accurately captured the periodicity of the system; and is seen to generalize
for a much longer duration than the NUTS sampler.

2.3.1 Comparison between SGLD and NUTS

Through figures 1 and 6, we note that SGLD generally has a better mean prediction accuracy than
NUTS. This can be attributed to the non-convexity/multi-modality of the likelihood function where
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(a) (b)

Figure 7: (a) Figure shows that for the NUTS sample initialized at the MAP point, the sampler
quickly jumps away from the MAP point and never returns back. (b) Figure shows that for the SGLD
sampler initialized at the MAP, all posteriors samplers are close to the MAP point.

the MAP point is likely to be in a region with low probability mass, leading the NUTS sampler which
uses non-stochastic gradients to not "find" the region surrounding the MAP point in the time of the
sampling. The use of stochastic gradients in SGLD seems to have led to a sample much closer to the
MAP point and with a much lower mean prediction error. This difference between NUTS and SGLD
is illustrated in figure 7, where the distance of the posterior samples from the MAP point is shown.
Figure 7a shows that for the NUTS sample initialized at the MAP point, the sampler quickly jumps
away from the MAP point and never returns back. Figure 7b shows that for the SGLD sampler, all
posteriors samplers are much closer to the MAP point, than the NUTS sampler.

2.4 Bayesian Neural ODE: Variational Inference

Since the last decade, there has been explosive interest in applying variational inference (VI) to
text analysis, generative image modeling, and physical/chemical systems analysis [28]. VI, an
optimization-based approach, generally approximates the posterior much faster than traditional
MCMC methods. Variational inference was traditionally used for learning in graphical models
(e.g. the sigmoid belief network) [17, 29]. However, there have been significant expansions in the
methodology and application domains of VI; examples include stochastic variational inference [13]
on large-scale data analysis and black-box variational inference’s [27] usage beyond conditionally
conjugate models. Through the use of normalizing flows [28], implicit distributions [23, 31] and
importance-weighted variational autoencoders [7], the posterior-approximating variational inference
family was made more expressive and thus powerful.

Here, we aim to address whether variational inference methods can be integrated into, and thus
further expand, our Bayesian Neural ODEs framework. We use the Turing.jl interface in Julia [9].
Initially, we define a multivariate normal distribution as the posterior family approximating the true
posterior with a mean-field approximation. For maximizing the expected lower bound, we use ADVI
(Automatic Differentiation Variational Inference) [19], with 10 samples per step and 5000 as the
upper bound on the number of gradient steps. Figure 8a shows the poor forecasting performance
of the Bayesian Neural ODE: Variational Inference framework applied to the Spiral ODE example,
compared to HMC methods explored above (figures 1, 3).

2.4.1 Integration of Normalizing Flows

One possible reason for the poor forecasting performance of the VI + Neural ODE framework could
be due to the posterior family not being expressive enough. To further explore the effects of a
powerful posterior family, we look at normalizing flows.

Through a chain of invertible mappings, normalizing flows transform an initially simple posterior
family distribution (such as the multivariate normal in the above example) into an arbitrary complex
distribution [28]. Considering an initial random variable z with a distribution prescribed by q(z).
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(a)

(b)

Figure 8: For the Spiral ODE example (Equations 1-2), figure shows the retrodiction plots for (a)
Variational Inference framework used in the present study and (b) Variational Inference integrated
with Normalizing Flow. We can see that integration with normalizing flows used shows marginal
improvement over plain Variational Inference with mean field approximation.

A bijective mapping function f with inverse g, when applied to z results in a new variable z′ with
distribution given by

q′(z′) = q(z)|det
∂g

∂z′
| = q(z)|det

∂f

∂z
|−1 (18)

In their original work, [28] demonstrated two types of normalizing flows: planar layer and radial
layer. In this study, we have employed the planar layer. The planar layer, parametrized by u,w, b is
given by the invertible function

f(z) = z + uh(wT z + b) (19)

where h is a differentiable element-wise non-linearity. Thus, applying a sequence of maps fk to an
initial density leads to the transformed variable and corresponding density as

zk = fk ◦ fk−1 ◦ . . . ◦ f1(z)

lnqk(zk) = lnq0(z)−
K∑
k=1

ln|1 + uTk ψkzk−1|
(20)

where ψ(z) = h′(wT z + b)w. Application of a planar flow to a standard Gaussian distribution leads
to flexible expansions/contractions along hyperplanes and thus makes the base distribution a lot more
expressive.

In the present study, the base distribution was initialized as a multivariate normal distribution with
mean as a randomly initialized vector with length governed by the number of parameters of the neural
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(a) (b)

Figure 9: Bayesian Neural UDE estimation is demonstrated for the Lotka Volterra example with a
missing term as shown in (21); using the PSGLD approach. (a) Comparison of the recovered missing
term and the actual term and (b) Sparsity plot using the STRRidge algorithm. The highlighted box
shows the optimal point which gives the sparsest solution (1 term) with a low error. This plot is seen
to be the same for 100 trajectories considered in the sampling phase.

ODE. We transformed this base distribution using a composition of 2 such planar layers described in
Equation (19); with z being the parameters of the neural ODE.

Figure 8b shows that through the inclusion of normalizing flows, the estimation performance of the
Bayesian Neural ODE: Variational Inference object is marginally better compared to figure 8a. For
the Variational Inference experiment we used During experiments with different configurations such
as Neural Network size, time span of solution and initial weights for the Neural Network used as well
for the Normalizing Flow layers had considerable effect on the training performance and forecasting
capability of the model. There are quite a lot of open questions that need to be addressed to ensure
suitability of Variational Inference with Neural ODEs and will be part of future work.

2.5 Bayesian Neural UDE: SGLD and PSGLD

In this section, we aim to demonstrate a viable method for the probabilistic quantification of epistemic
uncertainties via a hybrid machine-learning and mechanistic-model-based technique.

More efficient training of deep neural networks is achieved by using a preconditioned matrix G(θ) in
the gradient update step of Equation 15 of the SGLD method [20]. Combining this with an adaptive
step size method like RMSprop leads to much faster sampling than the standard SGLD approach, as
outlined in the Preconditioned SGLD with RMSprop algorithm by [20]. We demonstrate the use of
this algorithm in this section, where standard SGLD failed to converge to the true posterior.

2.5.1 Application to a predator-prey model

As outlined by [25], universal differential equations (UDE’s) can be used to recover missing terms of
governing equations describing dynamical systems. As an example, we look at the Lotka Volterra
system with a missing term denoted by M(u1, u2) in the first variable derivative as

du1
dt

= −αu1 −M(u1, u2) (21)

du2
dt

= −δu2 + γu1u2 (22)

(23)

Using the PSGLD method outlined in [25], we trained Mθ(u1, u2) as a neural network to optimize
the weights θ; and recover the missing term time series. We sampled from the last 100 updates of the
converged sampler. Figure 9a shows that the recovered time series Mθ(u1, u2) from 100 trajectories
matches very well with the actual term Mθ(u1, u2) = u1u2. These optimized parameter space for all
100 trajectories lies very close to each other, indicating that the PSGLD method indeed converges
and then subsequently samples closer to the true posterior.
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Table 3: Bayesian Neural UDE: Recovery of dominant terms for the Lotka Volterra example, as the
sparsity parameter λ is varied. Highlighted row shows the sparsity parameter with the lowest positive
AIC score.

λ Number of Dominant terms Error Mean %
Active terms AIC score sampled

0.01 9 u21, u
2
2, u1u2 0.765 40.4 100

u21u
2
2, u

2
1u2, u

2
2u1

u1u2, const
0.1 9 u21, u

2
2, u1u2 0.764 35 100

u21u
2
2, u

2
1u2, u

2
2u1

u1u2, const
1 5 u21, u

2
2, u2 0.764 21.6 100

u21u2, u1u2
2 2 u21u2, u1u2 0.634 7.2 100

3 1 u1u2 0.7 4.1 100

5 1 u21u2 2.49 -1 100

(a)

Figure 10: Bayesian Neural UDE estimation is demonstrated for the SEIR example with a missing
term as shown in (29); using the PSGLD approach. (a) Comparison of the recovered missing term
and the actual term shown for 100 trajectories considered in the sampling phase.

Subsequently, we used a sparse regression technique called Sequential Thresholded Ridge Regression
(STRRidge) algorithm [4] on the neural network output to reconstruct the missing dynamical equations
for 100 trajectories of the sampled parameter space. The STRRidge algorithm has a tunable sparsity
parameter λ to control the sparsity of the obtained dominant terms. Optimally, we would want the
sparsest solution with the least possible error.

Figure 9b shows the variation of the number of terms recovered by the STRRidge algorithm with the
sparsity parameter, λ; which shows a decreasing trend as expected. The colorbar indicates the error
between the sparse recovered solution and the neural network output Mθ(u1, u2). It can be seen that
the highlighted box indicates the optimal point which has the sparsest solution (1 term) with a very
low error. This point also corresponds to the lowest positive AIC score (Akaike Information Criteria)
[3, 33] which strives to minimize the model error as well as its complexity (shown in Table 3). Along
with showing the AIC score as function of the sparsity parameter λ, table 3 also shows the dominant
terms as the sparsity parameter λ is varied.

This optimal solution has the quadratic form ∼ u1u2, for all 100 trajectories indicating that Bayesian
Neural UDE approach recovers the correct solution for all sampled trajectories. Out of the 100
models sampled for the optimal sparsity parameter, the model with the lowest AIC score was found
to be M(u1, u2) = 0.96u1u2, which is very close to the true solution M(u1, u2) = u1u2.
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2.5.2 Application to an epidemiology model

As another example to test our approach, we consider a SEIR epidemiological model. The SEIR
is a compartment based model which models transfer of population between four compartments:
Susceptible, Exposed, Infected and Recovered using the following set of equations:

dS

dt
= −βSI (24)

dE

dt
= βSI − σE (25)

dI

dt
= σE − γI (26)

dR

dt
= γI (27)

(28)

In Equation 24, we will try to infer the exposure term using Bayesian Neural UDE: PSGLD approach.
Thus, we will try to learn M(E, I) = σE in the following system of equations

dS

dt
= −βSI (29)

dE

dt
= βSI −M(E, I) (30)

dI

dt
= σE − γI (31)

dR

dt
= γI (32)

(33)

Using the PSGLD method outlined in [25], we trained Mθ(E, I) as a neural network to optimize the
weights θ; and recover the missing term time series. We sampled from the last 100 updates of the
converged sampler. Figure 10a shows that the recovered time series Mθ(E, I) from 100 trajectories
matches very well with the actual term Mθ(E, I) = σE.

Subsequently, we applied the STRRidge algorithm to recover the symbolic equations for the missing
terms, with the sparsity parameter λ ranging from 0.005− 0.5. The model for which the lowest AIC
score was obtained, was found to contain just one dominant term (E) and with the symbolic form
M(E, I) = 0.099E compared to the ground truth data of M(E, I) = 0.1E, for all 100 trajectories
sampled.

Thus, the model discovery for both the predator-prey example and the epidemiological model is
robust to uncertainty. The Bayesian Neural UDE framework is thus an added arsenal to the recently
demonstrated methods on bayesian system identification [2, 36]. Future work will further identify the
relationship between model uncertainties and probabilistic automated discovery.

3 Conclusion and Future Work

We have shown that Bayesian learning frameworks can be integrated with Neural ODE’s to quantify
the uncertainty in the weights of a Neural ODE, using three sampling methods: NUTS, SGHMC and
SGLD. Bayesian Neural ODEs with SGLD sampling is seen to provide better prediction accuracy
and less bias from the MAP than NUTS sampling, possibly due to non-convexity/multi-modality of
the likelihood function where the MAP point is likely to be in a region with low probability mass.
However, a better understanding of why the two algorithms differ and how they compare to other
algorithms is needed.

In addition, using a novel architecture which integrates convolution layers and Neural ODEs with the
SGHMC framework; we demonstrate a test ensemble accuracy of 99.22% which is comparable with
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the accuracy of state-of-the-art image classification methods.

Subsequently, for the first time, we demonstrate the integration of Neural ODEs with Variational
Inference. We show that when variational inference is combined with normalizing flows, it leads to
a good prediction and estimation performance on physical systems; thus leading to a potentially
powerful Bayesian Neural ODE object.

Finally, considering the problem of recovering missing terms from a dynamical system using
universal differential equations (UDEs); we demonstrate the Bayesian recovery of missing terms
from dynamical systems for (a) a predator-prey model and (b) an epidemiological model.

Currently, it is observed that Bayesian learning of Neural ODEs is computationally expensive for
large datasets. Therefore, more work is needed to evaluate, understand and improve the conver-
gence of various approximate Bayesian inference and MCMC algorithms in the context of Neural
ODEs. Another research direction we plan to delve into further is Bayesian Neural SDE’s and their
applicability to physical systems and large scale machine learning datasets.

4 Code Availability

All codes for SGHMC, Bayesian Neural UDE are publicly available at
https://github.com/RajDandekar/MSML21_BayesianNODE
and codes for the Variational Inference Neural ODE object is available at
https://github.com/mohamed82008/
BayesNeuralODE.jl

References

[1] Look Andreas and Melih Kandemir. Differential bayesian neural nets. arXiv preprint
arXiv:1912.00796, 2019.

[2] Steven Atkinson. Bayesian hidden physics models: Uncertainty quantification for discovery of
nonlinear partial differential operators from data. arXiv preprint arXiv:2006.04228, 2020.

[3] Hamparsum Bozdogan. Model selection and akaike’s information criterion (aic): The general
theory and its analytical extensions. Psychometrika, 52(3):345–370, 1987.

[4] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

[5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

[6] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pages 1683–1691. PMLR, 2014.

[7] Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted
autoencoders. arXiv preprint arXiv:1704.02916, 2017.

[8] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a language for flexible probabilistic
inference. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018,
9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pages 1682–1690, 2018.

[9] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a language for flexible probabilistic
inference. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018,
9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pages 1682–1690, 2018.

[10] Mark Girolami. Bayesian inference for differential equations. Theoretical Computer Science,
408(1):4 – 16, 2008. Computational Methods in Systems Biology.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

14



[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[13] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14(5), 2013.

[14] Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[15] Hanwen Huang, Andreas Handel, and Xiao Song. A bayesian approach to estimate parameters
of ordinary differential equation. Computational Statistics, 35(3):1481–1499, Sep 2020.

[16] Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov, and
Andrew Gordon Wilson. Subspace inference for bayesian deep learning. CoRR, abs/1907.07504,
2019.

[17] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[18] Laurent Valentin Jospin, Wray L. Buntine, F. Boussaid, Hamid Laga, and M. Bennamoun.
Hands-on bayesian neural networks - a tutorial for deep learning users. ArXiv, abs/2007.06823,
2020.

[19] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
differentiation variational inference. The Journal of Machine Learning Research, 18(1):430–474,
2017.

[20] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient langevin dynamics for deep neural networks. arXiv preprint arXiv:1512.07666, 2015.

[21] David J. Lunn, Nicky Best, Andrew Thomas, Jon Wakefield, and David Spiegelhalter. Bayesian
analysis of population pk/pd models: General concepts and software. Journal of Pharmacoki-
netics and Pharmacodynamics, 29(3):271–307, Jun 2002.

[22] Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. CoRR, abs/1902.02476, 2019.

[23] Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

[24] Christopher Rackauckas, Alan Edelman, Keno Fischer, Mike Innes, Elliot Saba, Viral B Shah,
and Will Tebbutt. Generalized physics-informed learning through language-wide differentiable
programming. In AAAI Spring Symposium: MLPS, 2020.

[25] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit
Supekar, Dominic Skinner, and Ali Ramadhan. Universal differential equations for scientific
machine learning. arXiv preprint arXiv:2001.04385, 2020.

[26] Christopher Rackauckas and Qing Nie. Differentialequations. jl–a performant and feature-rich
ecosystem for solving differential equations in julia. Journal of Open Research Software, 5(1),
2017.

[27] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial
intelligence and statistics, pages 814–822. PMLR, 2014.

[28] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

[29] Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief
networks. Journal of artificial intelligence research, 4:61–76, 1996.

[30] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to bayesian
convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731,
2019.

[31] Michalis K Titsias. Learning model reparametrizations: Implicit variational inference by fitting
mcmc distributions. arXiv preprint arXiv:1708.01529, 2017.

[32] Udo von Toussaint. Bayesian inference in physics. Rev. Mod. Phys., 83:943–999, Sep 2011.

15



[33] Eric-Jan Wagenmakers and Simon Farrell. Aic model selection using akaike weights. Psycho-
nomic bulletin & review, 11(1):192–196, 2004.

[34] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[35] Kai Xu, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, and Zoubin Ghahramani.
Advancedhmc. jl: A robust, modular and efficient implementation of advanced hmc algorithms.
2019.

[36] Yibo Yang, Mohamed Aziz Bhouri, and Paris Perdikaris. Bayesian differential program-
ming for robust systems identification under uncertainty. Proceedings of the Royal Society A,
476(2243):20200290, 2020.

16


	1 Introduction
	2 Results
	2.1 Bayesian Neural ODE: NUTS Sampler
	2.2 Bayesian Neural ODE: SGHMC
	2.2.1 SGHMC on the MNIST dataset

	2.3 Bayesian Neural ODE: SGLD
	2.3.1 Comparison between SGLD and NUTS

	2.4 Bayesian Neural ODE: Variational Inference
	2.4.1 Integration of Normalizing Flows

	2.5 Bayesian Neural UDE: SGLD and PSGLD
	2.5.1 Application to a predator-prey model
	2.5.2 Application to an epidemiology model


	3 Conclusion and Future Work
	4 Code Availability

